跳到主要内容
版本:0.10

集群部署

我们强烈建议将 GreptimeDB 集群部署在 Kubernetes 中,这里是一些此次部署的前置依赖:

  • Kubernetes(>=1.18)

    出于测试原因,你可以使用 Kind 或者 MiniKube 来创建 Kubernetes 环境。

  • Helm v3

  • kubectl

Step 1: 部署 GreptimeDB Operator

使用如下命令来添加 Helm Chart 仓库:

helm repo add greptime https://greptimeteam.github.io/helm-charts/
helm repo update

创建 greptimedb-admin namespace 并将 GreptimeDB Operator 部署在这个 namespace 中:

kubectl create ns greptimedb-admin
helm upgrade --install greptimedb-operator greptime/greptimedb-operator -n greptimedb-admin

Step 2: 部署 GreptimeDB Cluster

GreptimeDB 集群需要使用 etcd 集群来作为 metasrv 的后端存储。我们建议使用 Bitnami etcd chart 来部署 etcd 集群:

kubectl create ns metasrv-store
helm upgrade --install etcd oci://registry-1.docker.io/bitnamicharts/etcd \
--set replicaCount=3 \
--set auth.rbac.create=false \
--set auth.rbac.token.enabled=false \
-n metasrv-store

当 etcd 集群已经部署完成,你可以用如下命令来检查其健康状况:

kubectl -n metasrv-store \
exec etcd-0 -- etcdctl \
--endpoints etcd-0.etcd-headless.metasrv-store:2379,etcd-1.etcd-headless.metasrv-store:2379,etcd-2.etcd-headless.metasrv-store:2379 \
endpoint status

Step 3: 部署 Kafka 集群

我们建议使用 strimzi-kafka-operator 来部署 KRaft 模式的 Kafka 集群。

创建 kafka namespace 并安装 strimzi-kafka-operator:

kubectl create namespace kafka
kubectl create -f 'https://strimzi.io/install/latest?namespace=kafka' -n kafka

当 operator 部署完成,使用如下 Spec 来创建 Kafka 集群:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
name: dual-role
labels:
strimzi.io/cluster: kafka-wal
spec:
replicas: 3
roles:
- controller
- broker
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 20Gi
deleteClaim: false
---

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: kafka-wal
annotations:
strimzi.io/node-pools: enabled
strimzi.io/kraft: enabled
spec:
kafka:
version: 3.7.0
metadataVersion: 3.7-IV4
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
entityOperator:
topicOperator: {}
userOperator: {}

将上述 spec 保存为 kafka-wal.yaml 并 apply 到 Kubernetes 中:

kubectl apply -f kafka-wal.yaml -n kafka

当 Kafka 集群部署完成,检查其状态:

kubectl get kafka -n kafka

预期的输出将会是:

NAME        DESIRED KAFKA REPLICAS   DESIRED ZK REPLICAS   READY   METADATA STATE   WARNINGS
kafka-wal True KRaft

Step 4: 部署 Remote WAL 配置下的 GrpetimeDB 集群

使用如下 remote WAL 配置来创建 GreptimeDB 集群:

cat <<EOF | kubectl apply -f -
apiVersion: greptime.io/v1alpha1
kind: GreptimeDBCluster
metadata:
name: my-cluster
namespace: default
spec:
base:
main:
image: greptime/greptimedb:latest
frontend:
replicas: 1
meta:
replicas: 1
etcdEndpoints:
- "etcd.metasrv-store:2379"
datanode:
replicas: 3
remoteWal:
kafka:
brokerEndpoints:
- "kafka-wal-kafka-bootstrap.kafka:9092"
EOF

当集群部署完成,可用如下命令检查其状态:

kubectl get gtc my-cluster -n default

预期输出将会是:

NAME         FRONTEND   DATANODE   META   PHASE     VERSION   AGE
my-cluster 1 3 1 Running latest 5m30s

Step 5: 写入和读取数据

我们将选用 MySQL 协议来连接数据库集群。

使用 kubectl 的 port forward 来转发 4002 流量:

kubectl port-forward svc/my-cluster-frontend 4002:4002 -n default

打开另一个 terminal 并用 mysql 连接集群:

mysql -h 127.0.0.1 -P 4002

创建分布式表:

CREATE TABLE dist_table(
ts TIMESTAMP DEFAULT current_timestamp(),
n INT,
row_id INT,
PRIMARY KEY(n),
TIME INDEX (ts)
)
PARTITION ON COLUMNS (n) (
n < 5,
n >= 5 AND n < 9,
n >= 9
);

写入数据:

INSERT INTO dist_table(n, row_id) VALUES (1, 1);
INSERT INTO dist_table(n, row_id) VALUES (2, 2);
INSERT INTO dist_table(n, row_id) VALUES (3, 3);
INSERT INTO dist_table(n, row_id) VALUES (4, 4);
INSERT INTO dist_table(n, row_id) VALUES (5, 5);
INSERT INTO dist_table(n, row_id) VALUES (6, 6);
INSERT INTO dist_table(n, row_id) VALUES (7, 7);
INSERT INTO dist_table(n, row_id) VALUES (8, 8);
INSERT INTO dist_table(n, row_id) VALUES (9, 9);
INSERT INTO dist_table(n, row_id) VALUES (10, 10);
INSERT INTO dist_table(n, row_id) VALUES (11, 11);
INSERT INTO dist_table(n, row_id) VALUES (12, 12);

接着查询数据:

SELECT * from dist_table;